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Abstract. Standard statistical methods involve strong as-
sumptions that are rarely met in real data, whereas re-
sampling methods permit obtaining valid inference without
making questionable assumptions about the data generating
mechanism. Among these methods, subsampling works un-
der the weakest assumptions, which makes it particularly ap-
plicable for atmospheric and climate data analyses. In the pa-
per, two problems are addressed using subsampling: (1) the
construction of simultaneous confidence bands for the un-
known trend in a time series that can be modeled as a sum
of two components: deterministic (trend) and stochastic (sta-
tionary process, not necessarily an i.i.d. noise or a linear pro-
cess), and (2) the construction of confidence intervals for the
skewness of a nonlinear time series. Non-zero skewness is
attributed to the occurrence of coherent structures in turbu-
lent flows, whereas commonly employed linear time series
models imply zero skewness.

1 Introduction

With the availability of new sources of data, time series anal-
ysis has been playing an ever-increasing role in atmospheric
and climate studies. The problem is that conventional sta-
tistical methods are “based on certain probabilistic assump-
tions about the nature of the physical process that gener-
ates the time series of interest. Such mathematical assump-
tions are rarely, if ever, met in practice” (Ghil et al., 2002).
One common assumption is that observations are normally
distributed. Yet in reality, distributions are often not nor-
mal, such as those for the velocity field in a turbulent flow
(Lesieur, 2008), the precipitation amount, or the economic
damage from extreme weather events (Katz, 2002; Katz et
al., 2002), and new advances in statistics have made it clear
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that even slight departures from normality can be a source
of concern (e.g.,Wilcox, 2003). Another questionable as-
sumption is that of a linear model for the observed time se-
ries, whereas the real data generating mechanism (DGM) is
inherently nonlinear, so that estimation commonly based on
a fitted linear models may be misleading (e.g.,Gluhovsky,
2008).

Meanwhile, recent progress in computer-intensive (aka
bootstrap or resampling) methods makes it possible to avoid
reliance on questionable assumptions in time series analy-
sis. One such method, the subsampling (Politis et al., 1999),
is particularly suitable for atmospheric and climate time se-
ries. In this paper, subsampling techniques are suggested to
address two fundamental problems in atmospheric and cli-
mate dynamics: trends and coherent structures (CSs) that are
described in Sect. 2. AsPhillips (2005) noted, “no one un-
derstands trends, but everyone sees them in the data”, and
in spite of observational successes, the problem of describ-
ing turbulent flows with CSs remains a formidable theoretical
challenge (Tabeling, 2002). In Sect. 3, subsampling is briefly
introduced and, as an example, the construction of subsam-
pling confidence intervals for the skewness of an observed
time series is provided (positive skewness indicates the pres-
ence of CSs). Then the subsampling technique developed for
confidence intervals is extended to that for the construction
of simultaneous confidence bands for unknown trends.

2 Motivating problems

2.1 Trends in climate variables

As with other important concepts, such as turbulence or co-
herent structures, there is no commonly accepted definition
of a trend, and though even today the trend remains rela-
tively little understood (e.g.,White and Granger, 2011), it is
usually taken as a smooth function representing systematic
developments.
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One difficulty in trend analysis is that what one per-
ceives as a deterministic trend may well be produced by a
purely stochastic mechanism (as with random walks or long-
memory processes); such an artifact is sometimes called a
stochastic trend. In practice, when a relatively short portion
of the series is only available, the two possibilities (determin-
istic or stochastic trend) are often indistinguishable statisti-
cally (e.g.,Fatichi et al., 2009), though sometimes conclu-
sive statistical evidence can be obtained. For the temperature
data, for instance,Beran and Feng(2002) found statistical
evidence for a deterministic trend by fitting their SEMIFAR
model,Rybski and Bunde(2009) detected linear trends us-
ing detrended fluctuation analysis. And, to add more confu-
sion, non-stationarity in the mean may also cause the long-
memory effect (Bhattacharya et al., 1983).

Therefore, for a number of reasons (see alsoAshley and
Patterson, 2010; Mudelsee, 2010), it is often practical to fol-
low the classical approach to model the time series as a sum,

Zt = mt +εt, (1)

of an unknown function, trendmt, and a stationary zero-
mean processεt. Then the trend may be estimated from the
data by nonparametric techniques such as local polynomial
regression with global (Cleveland and Devlin, 2009; Efro-
movich, 1999) or local (Ruppert, 1997; Gluhovsky and Agee,
2007) bandwidth selection or by using wavelets (Craigmile et
al., 2004). For example, the red curve in Fig.1 shows a trend
computed via local polynomial regression in the global tem-
perature series that plays a prominent role in climate change
studies (the gray curve, fromCowpertwait and Metcalfe,
2009). The series of 1800 data points gives global monthly
anomalies(◦C) from January 1856 to December 2005, rela-
tive to the average of the period 1961–1990.

Another difficulty in assessing trends, as well as time se-
ries parameters, is that estimates without any measure of their
validity are not very useful. In nonlinear regression, when
εt in Eq. (1) are independent identically distributed random
variables, this is provided by thesimultaneous confidence
bands(SCBs, e.g.,Eubank and Speckman, 1993) that quan-
tify the associated uncertainty (similar toconfidence inter-
vals (CIs) in classical statistics), so that the two functions,lt
andut, in Eq.(2)

P (lt < mt < ut) ≈ 0.90, (2)

trap the unknown trend with a given confidence, say, 90 %.
With dependence present (i.e., whenεt is a more gen-

eral stationary process, which is typically the case in geo-
sciences), constructing SCBs becomes a considerably more
difficult problem, which has been addressed in various ways
(Bühlmann, 1998; Wu and Zhao, 2007; Mudelsee, 2010).
When handled via subsampling, however, the problem be-
comes similar (as will be seen in Sect. 3.2) to a more familiar
one of obtaining subsampling CIs for parameters of a time
series (described in Sect. 3.1). The red and the blue dashed
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Fig. 1. Global monthly temperature anomalies(◦C), relative to
1961–1990 (gray curve) with a trend estimate (thick red curve), a
90 % SCB for the trend (dashed red curves) and calibrated 90 %
SCB for the trend (dashed blue curves).

curves in Fig.1 indicate the two versions of 90 % subsam-
pling SCBs for the trend in the temperature series obtained
in Sect. 3.2.

2.2 Coherent structures in turbulent flows

The study of organized structures in turbulent flows began
with the well-known laboratory experiments byBrown and
Roshko(1974) who provided the first documented visual
evidence that the mixing layer can be dominated by what
are now calledcoherent structures(CSs). The definition of
CSs continues to be somewhat evasive, but they are com-
monly viewed as organized long-lived motions that sponta-
neously arise, trap much energy, and cover the whole spec-
trum of fluid motions (down to the Kolmogorov scale). Per-
haps the most relevant atmospheric examples can be found in
organized structures that occur on a variety of spatial scales
within convective boundary layers that form during cold air
outbreaks over warmer water (Agee, 1987).

Meanwhile, turbulent flows with CSs are characterized
by non-Gaussian statistics (e.g.,Wyngaard and Weil, 1991;
Maurizi, 2006) reflected in the values of skewness and kur-
tosis that are different from those for a normal distribution
(0 and 3, respectively). Moreover, in numerical simulations
(e.g., Farge et al., 2003; Ruppert-Felsot et al., 2005), tur-
bulent flows were separated into coherent and incoherent
components using wavelet transforms. The coherent part,
represented by only a small fraction of the wavelet coeffi-
cients, retained the total flow dynamics and statistical prop-
erties, notably non-Gaussian skewness and kurtosis, while
the incoherent part was characterized by Gaussian statistics.
Thus, there is considerable interest in accurate estimation
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Fig. 2. Record of 20-Hz aircraft vertical velocity measurements
over Lake Michigan.

of skewness and kurtosis from time series records, however,
common practices may produce misleading results.

As a typical example, consider a time series of the verti-
cal velocity of wind in a convective boundary layer during
an outbreak of a polar air mass over the Great Lakes region.
The record in Fig.2 (that has passed a test for stationarity
Gluhovsky and Agee, 1994) consists of 8192 data points over
about 29 km across Lake Michigan, 50 m above the lake. The
sample mean, variance, skewness, and kurtosis of the verti-
cal velocity computed from the record are−0.04, 1.06, 0.83,
and 4.10, respectively. Although large skewness and kurtosis
may result from nonlinearities in the underlying data gener-
ating mechanism (DGM), sample characteristics like these
(routinely obtained in field programs as well as in laboratory
experiments and computer simulations) are just point esti-
mates (our “best guesses”) of the true values of the parame-
ters. Therefore, to learn how far one can trust these numbers,
CIs are employed.

A 90 % CI is the range of numbers that traps the unknown
parameter with probability 0.90 called thecoverage proba-
bility. Also referred to as anominalor targetcoverage prob-
ability (e.g.,Davison and Hinkley, 1997), it is attained only if
the assumptions underlying the method for the CI construc-
tion are met. Since in geosciences this is rarely the case, the
actual coverage probability may differ from the target level
(sometimes considerably). For example, when the DGM (or
a model time series) is linear, CIs for the mean or the variance
of the time series may be found analytically, but the common
practice of computing CIs from fitted linear models may re-
sult in erroneous CIs when the real DGM is, in fact, nonlinear
(Gluhovsky and Agee, 2007; Gluhovsky, 2008). Meanwile,
CIs for the skewness cannot be based on linear models, which
imply zero skewness. This is where subsampling becomes
instrumental since subsampling CIs do not rely on question-
able assumptions.

3 Subsampling confidence sets

3.1 Subsampling confidence intervals for parameters of
time series

Although CIs for parameters of amodel time series are of
no particular interest, they can be obtained via Monte Carlo
simulations with the model (which leads to the idea of sub-
sampling). To construct, say, a 90 % CI for a (known) time
series parameterθ , one could generate lots of the time series
realizations and compute from them estimates of, for exam-
ple,q0.05 andq0.95, the 0.05 and 0.95 quantiles of the distri-
bution of theroot, θ̂ −θ . Then anequal-tailed(Politis, 1998)
90 % CI forθ is

(θ̂ −q0.95, θ̂ −q0.05), (3)

whereθ̂ is a sample estimate ofθ .
Or, one may computeQ0.90, a 0.90 quantile of the distri-

bution of |θ − θ̂ |, i.e., Prob(|θ − θ̂ | < Q0.90) = 0.90, then a
symmetric(Hall, 1988) 90 % CI forθ is given by

(θ̂ −Q0.90, θ̂ +Q0.90). (4)

In real life situations, where the DGM (the model) is un-
known and typically only one record is available, subsam-
pling comes to the rescue by replacing independent computer
generated realizations from the known model bysubsamples,
or blocks of consecutive observations from the single record
that retain the dependence structure of the time series (Politis
et al., 1999). Underscored below are the first, intermediate,
and the last block, all of the same lengthb (theblock size) in
a record of a time series,Yt, containingn observations and,
therefore,n−b+1 blocks:

Y1,...,Yb︸ ︷︷ ︸
b

, ..., Yi,...,Yi+b−1︸ ︷︷ ︸
b

, ..., Yn−b+1,...,Yn︸ ︷︷ ︸
b

. (5)

Subsampling does not require that any model, linear or
nonlinear, be fitted to the data, and it works in complex
dependent data situations under the weakest assumptions
among other computer-intensive techniques. Still, models
are useful since it is with models that one may assess theac-
tual coverage of CIs via Monte Carlo (MC) simulations: with
known model, one may generate numerous records, compute
from each one the subsampling CI, and estimate its cover-
age probability by counting the fraction of times the known
parameter value,θ , was within the CI.

With this in mind, consider the model (Lenschow et al.,
1994),

Yt = Xt +a(X2
t −1), (6)

whereXt is a first order autoregressive process (AR(1)),

Xt = φXt−1+εt, (7)

0< φ < 1 anda are constants, andεt is a white noise process
(a sequence of uncorrelated random variables with mean 0
and varianceσ 2

ε ) with σ 2
ε = 1−φ2 so thatσ 2

X = 1.
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Fig. 3. Actual coverage probabilities of 90 % subsampling CIs for
the skewness (red) and variance (blue) of nonlinear time series (6)
at a = 0.145: n = 2048 (solid),n = 4096 (dotted), calibrated CIs
at n = 2048 (dashed). Horizontal green lines denote 0.85 and 0.89
levels.

AR(1) with a Gaussian white noise is widely employed in
studies of climate as a default model for correlated time se-
ries (e.g.,von Storch and Zwiers, 1999; Percival et al., 2004).
When the white noise in model (7) is not Gaussian, the model
may exhibit nonlinear behavior and is referred to as anim-
plicit nonlinear model (Fan and Yao, 2003), as opposed to
explicit nonlinear model (6), where AR(1) is altered with a
nonlinear component.

At a = 0.145, the mean, variance, skewness, and kurtosis
of Yt (in model6), are respectively,

M = 0, V = 1+2a2
≈ 1.04, S = (6a+8a3)/V 1.5) ≈ 0.84,

K = (3+60a2
+60a4)/V 2

≈ 3.95,

i.e., they are close to the corresponding sample character-
istics (−.04, 1.06, 0.83, 4.10) of the vertical velocity time
series in Fig.2. Thus, model (6) might provide a better de-
scription for that series than linear models, which inherently
have zero skewness. In simulations below,φ = 0.67 and the
the records contain 2048 data points, which permits to im-
itate the dependence structure of the vertical velocity time
series as characterized by autocorrelation functions.

Figure3 presents the actual coverage probabilities of sub-
sampling CIs for the variance (blue curves) and the skewness
(red curves) computed via MC simulations with model (6) at
a = 0.145. Subsampling CIs were found following Eq. (4)
with θ̂ now being the sample skewness (or variance) from
the whole record, and quantileQ0.90 being estimated from
all values of|θ̂ − θ̂i |, whereθ̂i was the sample skewness (or
variance) computed from thei-th subsample (5).

The curve for the variance in Fig.3 (solid blue) corre-
sponding ton = 2048 has the maximum of about 0.87 at

b = 200 (exceeding by far actual coverages of CIs based on
linear models e.g.,Gluhovsky, 2008), while the curve for the
skewness (solid red), where conventional CIs are unavail-
able, provides the maximum of about 0.83 atb = 250. Es-
timating the skewness does require longer records than those
for the variance (e.g.,Gluhovsky and Agee, 1994; Lenschow
et al., 1994).

A simple way to improve the coverage is to increase (when
feasible) the record length. The dotted curves in Fig.3
show the increased coverage probabilities for the variance
and skewness (blue and red, respectively) due to records of
4096 observations. Otherwise, the so-calledcalibration can
be used (Politis et al., 1999): nominal 0.90 CIs in the subsam-
pling procedure are replaced with those of higher confidence
level, which may be determined via MC simulations with an
approximating model (such as model (6) ata = 0.145 for the
time series in Fig.2). For example, the dashed red curve in
Fig. 3 was obtained for the skewness in casen = 2048 by re-
placing 0.90 subsampling CIs (which resulted in the solid red
curve) with 0.96 subsampling CIs. The dashed curve demon-
strates that coverage probabilities close to the target can be
achieved for a range of block sizes (the curve is above 0.89
level here atb ∈ (125,350)). A similar curve for the variance
(not shown) that also approaches the target (0.90 atb = 150)
was obtained by replacing 0.90 subsampling CIs (which re-
sulted in the solid blue curve) with 0.94 subsampling CIs.
This also brings the problem of the block size choice in sub-
sampling addressed in Sect. 3.3.

It was found that a 90 % subsampling CI (Eq.4) for the
skewness of the observed time series in Fig.2 is (0.63, 1.02),
whereas a calibrated one with 0.90 coverage (i.e., a 96 % sub-
sampling CI (Eq.4), according to the approximating model)
is (0.41, 1.24). Although the calibrated one is larger, both
serve the purpose of confirming that the skewness of the ver-
tical velocity time series is positive, thus indicating the pres-
ence of CSs in the flow.

3.2 Subsampling confidence bands for trends

To construct subsampling SCBs for the unknown trend func-
tion in Eq. (1), the subsampling procedure of Sect. 3.1 had to
be modified to include sample estimates of the trend in place
of those for the skewness. Therefore, functionslt andut in
Eq. (2) in this case were computed as

lt = m̂t −Q0.90, ut = m̂t +Q0.90, (8)

wherem̂t was the sample estimate of the trend computed (via
local linear regression) from the whole record, andQ0.90 was
the 0.90 quantile of the distribution of the maximum of the
absolute value of the trend in residualsZt − m̂t, estimated
via subsampling. That is, the statistic of interest here,|Zt −

m̂t|, was evaluated over subsamples of the record, instead
of independent realizations of the time series in case of MC
simulations (cf., Eq.4).
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Fig. 4. A realization of time series (9) at a = 0 (gray curve), trend
functionmt (thick black curve), a trend estimate computed from the
realization (thick red curve), a 90 % SCB for the trend (dashed red
curves) and calibrated 90 % SCB for the trend (dashed blue curves).

To get an idea of the method’s performance, the cover-
age of the thus obtained SCBs was assessed, as before, by
MC simulations with a model time series (representing that
in Fig. 1),

Zt = mt +Yt. (9)

In model (9), the trend function,mt = 0.1sin(4πt/n)+ t/n

(the black curve in Fig.4), is added to the stochastic pro-
cess (6) considered in Sect. 3.1, which plays the role ofεt in
Eq. (1). The gray curve in Fig.4 shows the total signalZt,
an example of estimated trend is presented by the red curve,
and the dashed red curves show a 90 % subsampling SCB.

For simulations with model (9), records of 1800 observa-
tions were used, as in the temperature series in Fig.1, whose
correlations in residuals are roughly described by the auto-
correlation function of time series (7) with φ = 0.67. Fig-
ure5 demonstrates the actual coverage of 90 % subsampling
SCBs for the trend in series (9) found, again, via MC simula-
tions. The solid red curve shows the actual coverage (at vari-
ous block sizes) when the noise is linear (a = 0 in Eq. (6), the
blue curve corresponds to the nonlinear noise witha = 0.2.
It can be seen that nonlinearity practically does not affect the
coverage, but both SCBs somewhat undercover, reaching the
maximum actual coverage of slightly over 0.84 atb = 600.
Hence a calibration might be in order, and the dotted red line
in Fig. 5 corresponds to the calibrated subsampling SCB at
a = 0 (nominal 94 % SCB that provides the actual coverage
of 0.90). It turns out, however, that the nominal and cali-
brated SCBs here (shown by the dashed red and blue curves,
respectively, in Fig.4) are very close, so that the calibration
in this case is probably unnecessary.

In practice, one may easily compare subsampling SCBs
(or CIs) with calibrated ones at various confidence levels and
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Fig. 5. Actual coverage probabilities of 90 % subsampling SCBs
for the trend in model (9) at a = 0 (solid red curve),a = 0.2 (blue
curve), and for a calibrated SCB ata = 0 (dotted red curve). Hori-
zontal green lines denote 0.85 and 0.89 levels.

(before looking for and running an approximating model) de-
cide, depending on the purpose of the study, whether cali-
bration is justified. For example, subsampling SCB for the
temperature time series in Fig.1 does not seem to need a
calibration (see the last paragraph of the Sect. 3.3).

3.3 Choice of the block size

As seen in Figs.3 and5, coverage probabilities of subsam-
pling CIs and SCBs depend considerably on the block sizeb,
and the numbers characterizing the maximum actual cover-
age in previous sections were found using the optimal blocks
( b = 200 for the variance andb = 250 for the skewness in
Sect. 3.1, orb = 600 for the trend in Sect. 3.2) obtained via
MC simulations with models. With only one record available
in practice, however, the choice of the block size becomes the
most difficult problem in subsampling (shared by all block-
ing methods). The asymptotic result (Politis et al., 1999),

b → ∞ and b/n → 0 as n → ∞, (10)

that the block size needs to tend to infinity with the sample
size but slower, does not help to choose the block size for
relatively short atmospheric and climatic records.

To handle this problem, one more resampling technique
has been developed (Gluhovsky et al., 2005) for comput-
ing the optimal block size from one record in case of sub-
sampling CIs (Eq.3). Recall (see Sect. 3.1) that to assess
the actual coverage of subsampling CIs via MC simulations,
one generates numerous records, computes from each one
the subsampling CI, then estimates its coverage probability
by counting the fraction of times the known parameter was
within the CI, and chooses optimalb as that providing the

www.nonlin-processes-geophys.net/18/537/2011/ Nonlin. Processes Geophys., 18, 537–544, 2011
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best coverage. Now, with only one record available, inde-
pendent realizations generated from a model are replaced
by pseudo realizationsobtained from the single record via
the following procedure (a version of the circular bootstrap
Politis and Romano, 1992). The record ofn data points is
“wrapped” around a circle, thenp < n points on the circle
are chosen at random (following a uniform distribution on
the circle) as starting points forp consecutive segments of a
pseudo realization. Thus the length of each segment isn/p

(n should be a multiple ofp) and the pseudo realization has
lengthn. The procedure is repeated to generate numerous
pseudo realizations (from the same record) that substitute in-
dependent realizations generated from a model time series.
Then the “coverage” is determined as before, but thecor-
rectcoverage proves very different. This is because the max-
ima of the curves analogous to any of those in Figs.3 and
5 (but based on pseudo realizations) vary wildly, depending
on the initial record used to generate the pseudo realizations.
It turns out, however, that such curves essentially retain the
shape of the corresponding ones obtained via MC simula-
tions, thus indicating a suitable block size to be used in sub-
sampling.

The procedure was successfully used to construct subsam-
pling CIs for the mean and variance (Gluhovsky et al., 2005),
skewness (Gluhovsky, 2008), and kurtosis (Gluhovsky and
Agee, 2009). Employed in all these studies were CIs (Eq.3),
where the coverage probability could be estimated as the
fraction of times the sample estimate (used in place of the
parameter known in MC simulations) was within the CI, and
the block size choice was determined based on coverage.

In CI (Eq.4), however, the sample estimate of the param-
eter isalwayswithin the CI. In this work, therefore, it was
found that dependence ofQ0.90 on block sizeb could be
used in place of that for the coverage in block size selec-
tion. In Fig.6, for example, each blue dashed curve is based
on pseudo realizations obtained from two different records
(n = 1800,p = 30) generated from model (9) (one record for
each curve). By comparing the dashed curves with those in
Fig. 5, one can see that the they indicate a range of block
sizes (b ∈ (500,800)) appropriate for subsampling. Return
now to a real life example: the global temperature series in
Sect. 3.1. The solid red curve in Fig.6 was computed from
the time series in Fig.1 in the same way as the dashed ones
from model (9). Thenb = 600 was chosen as a suitable block
sizes and subsampling withb = 600 was carried out, result-
ing in the SCB shown by the red dashed curves in Fig.1.
Calibration was then applied (based on 94 % SCB, accord-
ing to approximating model (9) resulting in the SCB shown
by the blue dashed curves. Similar to Fig.4, the difference
between the original and calibrated SCBs in this case is neg-
ligible.
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Fig. 6. QuantilesQ0.90 in Eq. (8) estimated for differentb using
pseudo realizations generated from one record: each blue dashed
curve is based on pseudo realizations generated from a record of
model time series (9), while the solid red curve is based on pseudo
realizations generated from the record in Fig.1.

4 Conclusions

The purpose of this simulation study was to demonstrate that
subsampling techniques may be developed to obtain valid
statistical inference in a variety of problems, where tradi-
tional time series analyses are hindered due to nonlinear data
generating mechanisms and limited records. Trends in cli-
mate variables and coherent structures (CSs) in turbulent
flows are two important problems of this kind considered
in the paper. Subsampling simultaneous confidence band
(SCB) for the trend in the time series in Fig.1 confirms the
possibility of an increasing temperature trend, and subsam-
pling confidence interval (CI) for the skewness of time series
in Fig. 2 confirms that the vertical velocity skewness is posi-
tive, thus suggesting the presence of CSs in the flow - infer-
ence unattainable by conventional statistical methods. Other
topics of intense development, where applying subsampling
should be advantageous, are extreme events and long-range
dependence (e.g.,Nordman and Lahiri, 2005; Rust, 2009;
Jach et al., 2011), i.e., problems arising in analysis of heavy-
tailed and/or long-memory time series, where common CIs
based on asymptotic maximum likelihood fail to capture the
real variability (Kallache et al., 2005).

The new tool for the analysis of nonlinear time series
presented here is the construction of subsampling SCBs for
trends. Our previous work on subsampling (including a re-
sampling technique for selecting the optimal block size for
subsampling CIs – the most difficult practical problem in
subsampling shared by all blocking methods) focused on
equal-tailed CIs for parameters of nonlinear time series,
the skewness and kurtosis in particular, as they are closely
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related to CSs. Because subsampling SCBs for trends are de-
veloped in this paper as extensions ofsymmetricCIs (Eq.4),
modifications in subsampling procedures proved necessary,
especially in the block size selection. The new implemen-
tation of the subsampling procedure that permits a straight-
forward extension to trends has also provided an opportu-
nity to update the previous analyses of the vertical velocity
time series with that based on symmetric subsampling CIs
and a longer record (of 8192 data points vs the record of
4096 used previously), and to make this paper self-contained.
Also, although almost all published work on bootstrap CIs
has focused on equal-tailed intervals, symmetric CIs are of-
ten shorter and have better coverage accuracy (Hall, 1988).
Thus, it seems useful to have subsampling techniques devel-
oped for the construction of both.

Time series models with statistical properties similar to
those of observed time series were extensively used in the
paper to evaluate (via Monte Carlo simulations) the per-
formance of subsampling techniques. Such approximating
models are also required to determine the level of calibra-
tion. However, calibration may not be necessary, which can
be determined (before looking for and running an approxi-
mating model) by comparing subsampling SCBs or CIs with
the calibrated ones at different confidence levels. Calibration
will only be justified if the difference between the original
and calibrated confidence sets will be considered significant
for the problem at hand. For example, as noted in the end of
Sect. 3.3, subsampling SCB for the temperature time series
in Fig. 1 does not need calibration.

Under very weak assumptions, the subsampling method-
ology provides large-sample CIs of asymptotically correct
coverage (Politis et al., 1999), but developing practical sub-
sampling procedures for records of limited length involves
the block size selection and, when calibration is required, the
search for an approximating model (such as model (6) for
the time series in Fig.2). Like the former, the latter problem
may also be difficult since linear models are inappropriate,
whereas the multitude of nonlinear models is overwhelm-
ing. As way to handle the problem, one might consider
physically sound low-order models that possess fundamen-
tal properties of fluid dynamical equations (in the spirit of
Lorenz, 1963, 1982andObukhov, 1973, see alsoGluhovsky,
2006), thereby infusing more physics into time series analy-
sis. From the perspective of complexity theory, the devel-
opment of appropriate statistical methods for atmospheric
and climate data analysis should be based on time series
spawned by the underlying dynamics rather than on tradi-
tional time series models (cf.,Nicolis and Nicolis, 2007).
Among other problems that may benefit from the physical in-
sight are those arising in estimating the trend function, such
as the choice of the bandwidth in local polynomial regres-
sion, which currently is based entirely on statistical consider-
ations (e.g.,Cleveland and Devlin, 2009; Efromovich, 1999;
Gluhovsky and Gluhovsky, 2007). The problem is very rele-
vant but beyond the scope of this paper devoted to finding the

ways to decide how much importance is reasonable to confer
on estimated trends.

Finally, the evolution and subsequent growth of CSs may
represent an underlying physical mechanism that can lead
to extreme events. Due to the incidence of CSs in tur-
bulent flows (indicated by non-Gaussian velocity skewness
and kurtosis), the tails of probability density functions be-
come heavy, thus increasing the probability of extremes
(McWilliams, 2007), and long-term trends observed in me-
teorological variables may alter conditions for the formation
of CSs, thus affecting the intensity and frequency of extreme
events.
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